Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(4): 445-458, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359092

RESUMO

Cardiovascular disease has been the leading cause of mortality and morbidity worldwide in the past 3 decades. Multiple cell lineages undergo dynamic alternations in gene expression, cell state determination, and cell fate conversion to contribute, adapt, and even modulate the pathophysiological processes during disease progression. There is an urgent need to understand the intricate cellular and molecular underpinnings of cardiovascular cell development in homeostasis and pathogenesis. Recent strides in lineage tracing methodologies have revolutionized our understanding of cardiovascular biology with the identification of new cellular origins, fates, plasticity, and heterogeneity within the cardiomyocyte, endothelial, and mesenchymal cell populations. In this review, we introduce the new technologies for lineage tracing of cardiovascular cells and summarize their applications in studying cardiovascular development, diseases, repair, and regeneration.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Diferenciação Celular , Linhagem da Célula , Doenças Cardiovasculares/genética , Miócitos Cardíacos
2.
Adv Sci (Weinh) ; 11(12): e2307256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233193

RESUMO

Atherosclerosis is initiated with endothelial cell (EC) dysfunction and vascular inflammation under hyperlipidemia. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase. However, the specific role of endothelial SIRT3 during atherosclerosis remains poorly understood. The present study aims to study the role and mechanism of SIRT3 in EC function during atherosclerosis. Wild-type Sirt3f/f mice and endothelium-selective SIRT3 knockout Sirt3f/f; Cdh5Cre/+ (Sirt3EC-KO) mice are injected with adeno-associated virus (AAV) to overexpress PCSK9 and fed with high-cholesterol diet (HCD) for 12 weeks to induce atherosclerosis. Sirt3EC-KO mice exhibit increased atherosclerotic plaque formation, along with elevated macrophage infiltration, vascular inflammation, and reduced circulating L-arginine levels. In human ECs, SIRT3 inhibition resulted in heightened vascular inflammation, reduced nitric oxide (NO) production, increased reactive oxygen species (ROS), and diminished L-arginine levels. Silencing of SIRT3 results in hyperacetylation and deactivation of Argininosuccinate Synthase 1 (ASS1), a rate-limiting enzyme involved in L-arginine biosynthesis, and this effect is abolished in mutant ASS1. Furthermore, L-arginine supplementation attenuates enhanced plaque formation and vascular inflammation in Sirt3EC-KO mice. This study provides compelling evidence supporting the protective role of endothelial SIRT3 in atherosclerosis and also suggests a critical role of SIRT3-induced deacetylation of ASS1 by ECs for arginine synthesis.


Assuntos
Aterosclerose , Sirtuína 3 , Humanos , Camundongos , Animais , Pró-Proteína Convertase 9 , Argininossuccinato Sintase , Arginina , Endotélio , Inflamação
3.
J Leukoc Biol ; 115(1): 100-115, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37195903

RESUMO

Hematopoiesis is a highly orchestrated biological process sustaining the supply of leukocytes involved in the maintenance of immunity, O2 and CO2 exchange, and wound healing throughout the lifetime of an animal, including humans. During early hematopoietic cell development, several waves of hematopoiesis require the precise regulation of hematopoietic ontogeny as well as the maintenance of hematopoietic stem and progenitor cells in the hematopoietic tissues, such as the fetal liver and bone marrow. Recently, emerging evidence has suggested the critical role of m6A messenger RNA (mRNA) modification, an epigenetic modification dynamically regulated by its effector proteins, in the generation and maintenance of hematopoietic cells during embryogenesis. In the adulthood, m6A has also been demonstrated to be involved in the functional maintenance of hematopoietic stem and progenitor cells in the bone marrow and umbilical cord blood, as well as the progression of malignant hematopoiesis. In this review, we focus on recent progress in identifying the biological functions of m6A mRNA modification, its regulators, and downstream gene targets during normal and pathological hematopoiesis. We propose that targeting m6A mRNA modification could offer novel insights into therapeutic development against abnormal and malignant hematopoietic cell development in the future.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Animais , Humanos , Adulto , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Medula Óssea/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Leukoc Biol ; 115(1): 19-35, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37675661

RESUMO

Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.


Assuntos
Diabetes Mellitus Tipo 2 , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Diabetes Mellitus Tipo 2/metabolismo , Envelhecimento/genética , Perfilação da Expressão Gênica
5.
Cardiovasc Res ; 120(1): 34-43, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38159046

RESUMO

Clinical evidence reveals that manifestations of endothelial dysfunction are widely observed in COVID-19 and long-COVID patients. However, whether these detrimental effects are caused by direct infection of the endothelium or are indirectly mediated by systemic inflammation has been a matter of debate. It has been well acknowledged that endothelial cells (ECs) of the cardiovascular system ubiquitously express the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), yet accumulating evidence suggests that it is more predominantly expressed by pericytes and vascular smooth muscle cells of the mammalian blood vessel. Besides, replicative infection of ECs by SARS-CoV-2 has yet to be demonstrated both in vitro and in vivo. In this study, we review latest research on endothelial ACE2 expression in different vascular beds, and the heterogeneity in various EC subsets with differential ACE2 expression in response to SARS-CoV-2. We also discuss ACE2-independent alternative mechanisms underlying endothelial activation in COVID-19, and the clinical manifestations of SARS-CoV-2-induced endothelial dysfunction. Altogether, understanding ACE2-dependent and ACE2-independent mechanisms driving SARS-CoV-2-induced vascular dysfunction would shed light on strategies of more effective therapies targeting cardiovascular complications associated with COVID-19.


Assuntos
COVID-19 , Doenças Vasculares , Animais , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Células Endoteliais/metabolismo , Síndrome Pós-COVID-19 Aguda , Peptidil Dipeptidase A/metabolismo , Mamíferos/metabolismo
6.
STAR Protoc ; 4(3): 102407, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392391

RESUMO

By virtue of their capability to replicate and regenerate, human stem-cell-derived beta-like cells could be a valuable resource for cellular therapy targeting insulin-dependent diabetes. Here, we present a protocol to generate beta-like cells from human embryonic stem cells (hESCs). We first describe steps for differentiation of beta-like cells from hESCs and CD9-negative beta-like cell enrichment through fluorescence-activated cell sorting. We then detail immunofluorescence, flow cytometry, and glucose-stimulated insulin secretion assay for characterization of human beta-like cells. For complete details on the use and execution of this protocol, please refer to Li et al. (2020).1.

7.
Dev Cell ; 58(16): 1502-1512.e3, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348503

RESUMO

Cardiac resident macrophages play vital roles in heart development, homeostasis, repair, and regeneration. Recent studies documented the hematopoietic potential of cardiac endothelium that supports the generation of cardiac macrophages and peripheral blood cells in mice. However, the conclusion was not strongly supported by previous genetic tracing studies, given the non-specific nature of conventional Cre-loxP tracing tools. Here, we develop an intercellular genetic labeling system that can permanently trace heart-specific endothelial cells based on cell-cell interaction in mice. Results from cell-cell contact-mediated genetic fate mapping demonstrate that cardiac endothelial cells do not exhibit hemogenic potential and do not contribute to cardiac macrophages or other circulating blood cells. This Matters Arising paper is in response to Shigeta et al. (2019), published in Developmental Cell. See also the response by Liu and Nakano (2023), published in this issue.


Assuntos
Células Endoteliais , Coração , Camundongos , Animais , Linhagem da Célula/genética , Diferenciação Celular , Endotélio
8.
Proc Natl Acad Sci U S A ; 120(25): e2207210120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307455

RESUMO

The classical manifestation of COVID-19 is pulmonary infection. After host cell entry via human angiotensin-converting enzyme II (hACE2), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can infect pulmonary epithelial cells, especially the AT2 (alveolar type II) cells that are crucial for maintaining normal lung function. However, previous hACE2 transgenic models have failed to specifically and efficiently target the cell types that express hACE2 in humans, especially AT2 cells. In this study, we report an inducible, transgenic hACE2 mouse line and showcase three examples for specifically expressing hACE2 in three different lung epithelial cells, including AT2 cells, club cells, and ciliated cells. Moreover, all these mice models develop severe pneumonia after SARS-CoV-2 infection. This study demonstrates that the hACE2 model can be used to precisely study any cell type of interest with regard to COVID-19-related pathologies.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Camundongos Transgênicos , SARS-CoV-2 , Células Epiteliais , Células Epiteliais Alveolares , Modelos Animais de Doenças
9.
Nat Genet ; 55(4): 665-678, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959363

RESUMO

After severe heart injury, fibroblasts are activated and proliferate excessively to form scarring, leading to decreased cardiac function and eventually heart failure. It is unknown, however, whether cardiac fibroblasts are heterogeneous with respect to their degree of activation, proliferation and function during cardiac fibrosis. Here, using dual recombinase-mediated genetic lineage tracing, we find that endocardium-derived fibroblasts preferentially proliferate and expand in response to pressure overload. Fibroblast-specific proliferation tracing revealed highly regional expansion of activated fibroblasts after injury, whose pattern mirrors that of endocardium-derived fibroblast distribution in the heart. Specific ablation of endocardium-derived fibroblasts alleviates cardiac fibrosis and reduces the decline of heart function after pressure overload injury. Mechanistically, Wnt signaling promotes activation and expansion of endocardium-derived fibroblasts during cardiac remodeling. Our study identifies endocardium-derived fibroblasts as a key fibroblast subpopulation accounting for severe cardiac fibrosis after pressure overload injury and as a potential therapeutic target against cardiac fibrosis.


Assuntos
Cardiopatias , Fibroblastos/metabolismo , Cardiopatias/genética , Cardiopatias/patologia , Fibrose/genética , Animais , Camundongos , Envelhecimento , Proliferação de Células , Via de Sinalização Wnt , Camundongos Transgênicos
10.
Proc Natl Acad Sci U S A ; 120(1): e2120582120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574652

RESUMO

Unraveling cell-cell interaction is fundamental to understanding many biological processes. To date, genetic tools for labeling neighboring cells in mammals are not available. Here, we developed a labeling strategy based on the Cre-induced intercellular labeling protein (CILP). Cre-expressing donor cells release a lipid-soluble and membrane-permeable fluorescent protein that is then taken up by recipient cells, enabling fluorescent labeling of neighboring cells. Using CILP, we specifically labeled endothelial cells surrounding a special population of hepatocytes in adult mice and revealed their distinct gene signatures. Our results highlight the potential of CILP as a platform to reveal cell-cell interactions and communications in vivo.


Assuntos
Células Endoteliais , Proteínas de Membrana , Animais , Camundongos , Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo
12.
Cell Mol Immunol ; 19(11): 1215-1234, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220996

RESUMO

B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.


Assuntos
Doenças Autoimunes , Epigênese Genética , Animais , Metilação de DNA/genética , Doenças Autoimunes/genética , Linfócitos B , RNA não Traduzido/genética
13.
J Hepatol ; 77(6): 1491-1503, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985547

RESUMO

BACKGROUND & AIMS: How hepatic steatosis progresses to non-alcoholic steatohepatitis (NASH) is complicated and remains unclear. The mortality factor 4-like protein 1 (MORF4L1, also called MRG15) was previously identified as a master nuclear chromatin remodeler in the rhythmic regulation of lipid synthesis gene expression in the liver. Whether it also contributes to the progression from liver steatosis to NASH is unclear. METHODS: We adopted 2 different murine NASH models, liver biopsies from patients with NASH, and primary mouse and human hepatocyte cultures for functional examination of MRG15 in NASH progression. Immunoprecipitation-mass spectrometry was applied to identify protein partners of MRG15, and CRISPR targeting was used for gene depletion in liver cells in vivo. RESULTS: The MRG15 level is increased in the livers of humans and mice with NASH. The inflammatory cytokines in NASH livers stabilize MRG15 by increasing its acetylation. Considerable amounts of MRG15 associate with the outer mitochondrial membrane, where it interacts with and deacetylates the mitochondrial Tu translation elongation factor (TUFM). Deacetylated TUFM, especially at the K82 and K91 sites, is subjected to accelerated degradation by the mitochondrial ClpXP protease system. Reduced liver TUFM consequently results in impaired mitophagy, increased oxidative stress and activation of the NLRP3 inflammasome pathway. Blocking MRG15 expression protects the liver from NASH progression by increasing the stability of liver TUFM. Liver samples from patients with NASH also display a clear reduction in TUFM level, which correlates with increased MRG15 expression. CONCLUSION: Collectively, these findings uncover a mitochondrial MRG15-TUFM regulatory pathway that contributes significantly to progression from simple steatosis to NASH, and which could potentially be targeted to treat NASH. LAY SUMMARY: The incidence of non-alcoholic fatty liver disease and its progressive form non-alcoholic steatohepatitis (NASH) is increasing, posing a significant global health challenge. Herein, we have uncovered the importance of the MRG15-TUFM pathway in NASH development. This pathway is active in the mitochondria (energy powerhouse of the cell) and could be targeted for the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Transativadores , Animais , Humanos , Camundongos , Proteínas Cromossômicas não Histona , Mitofagia , Peptídeo Hidrolases , Proteólise
14.
PLoS Genet ; 18(7): e1010262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793278

RESUMO

Urinary cell-free DNA (ucfDNA) is a potential biomarker for bladder cancer detection. However, the biological characteristics of ucfDNA are not well understood. We explored the roles of deoxyribonuclease 1 (DNASE1) and deoxyribonuclease 1-like 3 (DNASE1L3) in the fragmentation of ucfDNA using mouse models. The deletion of Dnase1 in mice (Dnase1-/-) caused aberrations in ucfDNA fragmentation, including a 24-fold increase in DNA concentration, and a 3-fold enrichment of long DNA molecules, with a relative decrease of fragments with thymine ends and reduction of jaggedness (i.e., the presence of single-stranded protruding ends). In contrast, such changes were not observed in mice with Dnase1l3 deletion (Dnase1l3-/-). These results suggested that DNASE1 was an important nuclease contributing to the ucfDNA fragmentation. Western blot analysis revealed that the concentration of DNASE1 protein was higher in urine than DNASE1L3. The native-polyacrylamide gel electrophoresis zymogram showed that DNASE1 activity in urine was higher than that in plasma. Furthermore, the proportion of ucfDNA fragment ends within DNase I hypersensitive sites (DHSs) was significantly increased in Dnase1-deficient mice. In humans, patients with bladder cancer had lower proportions of ucfDNA fragment ends within the DHSs when compared with participants without bladder cancer. The area under the curve (AUC) for differentiating patients with and without bladder cancer was 0.83, suggesting the analysis of ucfDNA fragmentation in the DHSs may have potential for bladder cancer detection. This work revealed the intrinsic links between the nucleases in urine and ucfDNA fragmentomics.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Bexiga Urinária , Animais , Ácidos Nucleicos Livres/genética , DNA/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/genética , Endonucleases , Humanos , Camundongos , Camundongos Knockout , Neoplasias da Bexiga Urinária/genética
15.
J Biol Chem ; 298(6): 101965, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461809

RESUMO

Genetic technology using site-specific recombinases, such as the Cre-loxP system, has been widely employed for labeling specific cell populations and for studying their functions in vivo. To enhance the precision of cell lineage tracing and functional study, a similar site-specific recombinase system termed Dre-rox has been recently used in combination with Cre-loxP. To enable more specific cell lineage tracing and ablation through dual recombinase activity, we generated two mouse lines that render Dre- or Dre+Cre-mediated recombination to excise a stop codon sequence that prevents the expression of diphtheria toxin receptor (DTR) knocked into the ubiquitously expressed and safe Rosa26 locus. Using different Dre- and Cre-expressing mouse lines, we showed that the surrogate gene reporters tdTomato and DTR were simultaneously expressed in target cells and in their descendants, and we observed efficient ablation of tdTomato+ cells after diphtheria toxin administration. These mouse lines were used to simultaneously trace and deplete the target cells of interest through the inducible expression of a reporter and DTR using dual Cre and Dre recombinases, allowing a more precise and efficient study of the role of specific cell subsets within a heterogeneous population in pathophysiological conditions in vivo.


Assuntos
Linhagem da Célula , Integrases , Recombinases , Animais , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética
16.
J Mol Cell Cardiol ; 168: 58-67, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460762

RESUMO

Vascular endothelium maintains vascular homeostasis through liberating a spectrum of vasoactive molecules, both protective and harmful regulators of vascular tone, structural remodeling, inflammation and atherogenesis. An intricate balance between endothelium-derived relaxing factors (nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor) and endothelium-derived contracting factors (superoxide anion, endothelin-1 and constrictive prostaglandins) tightly regulates vascular function. Disruption of such balance signifies endothelial dysfunction, a critical contributor in aging and chronic cardiometabolic disorders, such as obesity, diabetes, hypertension, dyslipidemia and atherosclerotic vascular diseases. Among many proposed cellular and molecular mechanisms causing endothelial dysfunction, oxidative stress and inflammation are often the pivotal players and they are naturally considered as useful targets for intervention in patients with cardiovascular and metabolic diseases. In this article, we provide a recent update on the therapeutic values of pharmacological agents, such as cyclooxygenase-2 inhibitors, renin-angiotensin-system inhibitors, bone morphogenic protein 4 inhibitors, peroxisome proliferator-activated receptor δ agonists, and glucagon-like peptide 1-elevating drugs, and the physiological factors, particularly hemodynamic forces, that improve endothelial function by targeting endothelial oxidative stress and inflammation.


Assuntos
Aterosclerose , Hipertensão , Aterosclerose/metabolismo , Fatores Biológicos/metabolismo , Fatores Biológicos/uso terapêutico , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Óxido Nítrico/metabolismo
18.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451374

RESUMO

Cell-free extrachromosomal circular DNA (eccDNA) as a distinct topological form from linear DNA has recently gained increasing research interest, with possible clinical applications as a class of biomarkers. In this study, we aimed to explore the relationship between nucleases and eccDNA characteristics in plasma. By using knockout mouse models with deficiencies in deoxyribonuclease 1 (DNASE1) or deoxyribonuclease 1 like 3 (DNASE1L3), we found that cell-free eccDNA in Dnase1l3-/- mice exhibited larger size distributions than that in wild-type mice. Such size alterations were not found in tissue eccDNA of either Dnase1-/- or Dnase1l3-/- mice, suggesting that DNASE1L3 could digest eccDNA extracellularly but did not seem to affect intracellular eccDNA. Using a mouse pregnancy model, we observed that in Dnase1l3-/- mice pregnant with Dnase1l3+/- fetuses, the eccDNA in the maternal plasma was shorter compared with that of Dnase1l3-/- mice carrying Dnase1l3-/- fetuses, highlighting the systemic effects of circulating fetal DNASE1L3 degrading the maternal eccDNA extracellularly. Furthermore, plasma eccDNA in patients with DNASE1L3 mutations also exhibited longer size distributions than that in healthy controls. Taken together, this study provided a hitherto missing link between nuclease activity and the biological manifestations of eccDNA in plasma, paving the way for future biomarker development of this special form of DNA molecules.


Assuntos
DNA , Feto , Animais , DNA Circular/genética , Desoxirribonucleases/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Feto/metabolismo , Humanos , Camundongos , Camundongos Knockout , Gravidez
19.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35482005

RESUMO

Tissue-resident macrophages play essential functions in the maintenance of tissue homeostasis and repair. Recently, the endocardium has been reported as a de novo hemogenic site for the contribution of hematopoietic cells, including cardiac macrophages, during embryogenesis. These observations challenge the current consensus that hematopoiesis originates from the hemogenic endothelium within the yolk sac and dorsal aorta. Whether the developing endocardium has such a hemogenic potential requires further investigation. Here, we generated new genetic tools to trace endocardial cells and reassessed their potential contribution to hematopoietic cells in the developing heart. Fate-mapping analyses revealed that the endocardium contributed minimally to cardiac macrophages and circulating blood cells. Instead, cardiac macrophages were mainly derived from the endothelium during primitive/transient definitive (yolk sac) and definitive (dorsal aorta) hematopoiesis. Our findings refute the concept of endocardial hematopoiesis, suggesting that the developing endocardium gives rise minimally to hematopoietic cells, including cardiac macrophages.


Assuntos
Linhagem da Célula , Coração , Macrófagos , Miocárdio , Animais , Aorta/citologia , Endocárdio/citologia , Coração/embriologia , Hematopoese/genética , Miocárdio/citologia , Saco Vitelino/citologia
20.
Front Cardiovasc Med ; 9: 852775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295259

RESUMO

Enhancement of protein synthesis from mRNA translation is one of the key steps supporting cardiomyocyte hypertrophy during cardiac remodeling. The methyltransferase-like5 (METTL5), which catalyzes m6A modification of 18S rRNA at position A1832, has been shown to regulate the efficiency of mRNA translation during the differentiation of ES cells and the growth of cancer cells. It remains unknown whether and how METTL5 regulates cardiac hypertrophy. In this study, we have generated a mouse model, METTL5-cKO, with cardiac-specific depletion of METTL5 in vivo. Loss function of METTL5 promotes pressure overload-induced cardiomyocyte hypertrophy and adverse remodeling. The regulatory function of METTL5 in hypertrophic growth of cardiomyocytes was further confirmed with both gain- and loss-of-function approaches in primary cardiomyocytes. Mechanically, METTL5 can modulate the mRNA translation of SUZ12, a core component of PRC2 complex, and further regulate the transcriptomic shift during cardiac hypertrophy. Altogether, our study may uncover an important translational regulator of cardiac hypertrophy through m6A modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...